Sensor Less Speed Control Of Pmsm Using Svpwm Technique

Download Free Sensor Less Speed Control Of Pmsm Using Svpwm Technique

Sensor Less Speed Control Of Pmsm Using Svpwm Technique

Sensorless Speed Control of Permanent Magnet-assisted Synchronous Reluctance Motor (PMa-synRM)

Speed Control of Sensorless Brushless DC Motor

Sensorless Speed Control of Induction Motor Using Differential Algebraic Speed Estimator

Nature-Inspired Computation and Machine Learning

T-Source Inverter-Based Sensorless Speed Control for Permanent Magnet Synchronous Motor

Sensorless Speed and Position Control of Induction Motor Drives 2017

Second International Conference on Electrical, Computer and Communication Technologies (ICECCT)

Quasi and Fully Sensorless Speed Control of Indirect RFOC Induction Motor Drives for Low Speed Operation

Sensorless speed control of a switched reluctance motor

Sensorless Speed Control of PMSM Drives Using DSPACE DS1103 Board

Advanced Linear Machines and Drive Systems

Artificial Intelligence and Renewables Towards an Energy Transition

Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives

Advances and Applications in Sliding Mode Control systems

Sensorless Speed Control of a Csi-fed Field Oriented Controlled Induction Machine

Advances of Science and Technology

Sensorless AC Electric Motor Control

Sensorless Speed Control of Permanent Magnet Synchronous Motor Development of Adaptive Speed Observers for Induction Machine System Stabilization

Recent Advances in Robust Control

Numerical Analysis

Sustainable Communication Networks and Application

Proceedings of the 4th International Conference on Electrical Engineering and Control Applications

Harmony Search and Nature Inspired Optimization Algorithms

Advances in Neural Networks - ISNN 2014

Sensorless Speed Control of Vector Controlled Reluctance Synchronous Motor Drives

Sensorless Zero Speed Control of Induction Motors

Sliding Mode Control in Electro-mechanical Systems

Power Electronics and Electric Drives for Traction Applications

High-Gain Feedback Control

SPEED ESTIMATION TECHNIQUES FOR SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR DRIVE

Sensorless Vector and Direct Torque Control

Optimization and Control of Electrical Machines

Smart Intelligent Computing and Applications

Fuzzy Logic Based Exact Sensorless Speed Control of Induction Motor at Low Range of Operations

Advanced Control Systems for Electric Drives

Applied Intelligent Control of Induction Motor Drives

Neural and Fuzzy Logic Control of Drives and Power Systems

Sensorless Speed Control of Induction Motors Using Sliding Mode Control

Strategy Nonlinear Sensorless Indirect Adaptive Position and Speed Control of Induction Motor with Unknown Rotor Resistance

Sensorless Speed Control of Permanent Magnet-assisted Synchronous Reluctance Motor (PMa-synRM)

Speed Control of Sensorless Brushless DC Motor 2017

Second International Conference on Electrical, Computer and Communication Technologies (ICECCT 2017)

Series of ICECCT has been started in the year 2015 and scheduled to be conducted once in every two years. The ICECCT 2017 aims to offer a great opportunity to bring together professors, researchers and scholars around the globe a great platform to deliver the latest innovative research results and the most recent developments and trends in Electrical, Electronics and Computer Engineering and Technology fields. The conference will feature invited talks from eminent personalities all around the world, pre conference tutorial workshops and referred paper presentations. The vision of ICECCT 2017 is to promote foster communication among researchers and practitioners working in a wide variety of the above areas in Engineering and Technology.

Sensorless Speed Control of Induction Motor Using Differential Algebraic Speed Estimator

Nature-Inspired Computation and Machine Learning

T-Source Inverter-Based Sensorless Speed Control for Permanent Magnet Synchronous Motor

The book focuses on position sensorless control for PMSM drives, addressing both basic principles and experimental evaluation. It provides an in-depth study on a number of major topics, such as model-based sensorless control, saliency-based sensorless control, position estimation error ripple elimination and acoustic noise reduction. Offering a comprehensive and systematic overview of position sensorless control and practical issues, it is particularly suitable for readers interested in the sensorless control techniques for PMSM drives. The book is also a valuable resource for researchers, engineers, and graduate students in fields of ac motor drives and sensorless control.

Sensorless Speed and Position Control of Induction Motor Drives

This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems.
PMSM Using SVPWM Technique

The resulting design procedures are emphasized using Matlab/Simulink software.

2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) Electrical machines are used in the process of energy conversion in the generation, transmission and consumption of electric power. In addition to this, electrical machines are considered the main part of electrical drive systems. Electrical machines are the subject of advanced research. In the development of an electrical machine, the design of its different structures is very important. This design ensures the robustness, energy efficiency, optimal cost and high reliability of the system. Using advanced techniques of control and new technology products has brought electrical machines into their optimal functioning mode. Different techniques of control can be applied depending on the goals considered. The aim of this book is to present recent work on the design, control and applications of electrical machines.

Quasi and Fully Sensorless Speed Control of Indirect RFOC Induction Motor Drives for Low Speed Operation Permanent magnet synchronous motors (PMSM) are used commonly in numerous industrial applications, for instance, in mechatronics, vacuum pumps, energy storage flywheels, automotive, centrifugal compressors, and robotics. Nowadays, the sensorless speed control of PMSM is getting more attention, and several studies are progressing because of its low cost and reliable features. Normally, the speed control methods in PMSM are achieved with the help of sensors for position or speed estimation and control. But, these sensors are easily prone to breakage. Also, the flexibility towards parameter variations is poor in the conventional speed control methods. So, a sensorless T-source inverter-based PMSM drive that integrates the Proportional Integral (PI) controller with an adaptive mechanism to cope with the time-varying system parameters is proposed in this article. A sensorless module, namely, a model reference adaptive system (MRAS), is employed to estimate the rotor position of PMSM based on its performance characteristics Simulation results are illustrated to investigate the performance of the proposed method with different speeds under no load and loaded conditions. Moreover, the proposed approach not only minimizes the cost and size of the motor but also maximizes the reliability and accuracy.

Sensorless speed control of a switched reluctance motor The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Fourth International Conference on Harmony Search, Soft Computing and Applications held at BML Munjal University, Gurgaon, India on February 7-9, 2018. It consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.

Sensorless Speed Control of PMSM Drives Using DSPACE DS1103 Board

Advanced Linear Machines and Drive Systems Numerical Analysis - Theory and Application is an edited book divided into two parts: Part I devoted to Theory, and Part II dealing with Application. The presented book is focused on introducing theoretical approaches of numerical analysis as well as applications of various numerical methods to either study or solving numerous theoretical and engineering problems. Since a large number of pure theoretical research is proposed as well as a large amount of applications oriented numerical simulation results are given, the book can be useful for both theoretical and applied research aimed on numerical simulations. In addition, in many cases the presented approaches can be applied directly either by theoreticians or engineers.

Artificial Intelligence and Renewables Towards an Energy Transition

Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives

Advances and Applications in Sliding Mode Control systems The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications. Introduces cutting-edge control systems to a wide readership of engineers and students The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies Learn to use VHDL in real-world applications

Sensorless Speed Control of a CSI-fed Field Oriented Controlled Induction Machine This work focuses on speed estimation techniques for sensorless closed-loop speed control of an induction machine based on direct field-oriented control technique. Details of theories behind the algorithms are stated and their performances are verified by the help of simulations and experiments. The field-oriented control as the vector control technique is mainly implemented in two ways: indirect field oriented control and direct field oriented control. The field to be oriented may be rotor, stator, or airgap flux-linkage. In the indirect field-oriented control no flux estimation exists. The angular slip velocity estimation based on the measured or
estimated rotor speed is required, to compute the synchronous speed of the motor. In the direct field oriented control the synchronous speed is computed with the aid of a flux estimator. Field Oriented Control is based on projections which transform a three phase time and speed dependent system into a two coordinate time invariant system. These projections lead to a structure similar to that of a DC machine control. The flux observer used has an adaptive structure which makes use of both the voltage model and the current model of the machine. The rotor speed is estimated via Kalman filter technique which has a recursive state estimation feature. The flux angle estimated by flux observer is processed taking the angular slip velocity into account for speed estimation. For closed-loop speed control of system, torque, flux and speed producing control loops are tuned by the help of PI regulators. The performance of the closed-loop speed control is investigated by simulations and experiments. TMS320F2812 DSP controller card and the Embedded Target for the TI C2000 DSP tool of Matlab are utilized for the real-time experiments.

Advances of Science and Technology

Sensorless AC Electric Motor Control Sliding Mode Control (SMC) is gaining increasing importance as a universal design tool for the robust control of linear and nonlinear systems. The strengths of sliding mode controllers result from the ease and flexibility of the methodology for their design and implementation. They provide inherent order reduction, direct incorporation of robustness against system uncertainties and disturbances, and an implicit stability proof. They also allow for the design of high performance control systems at low costs. SMC is particularly useful for electro-mechanical systems because of its discontinuous structure. In fact, since the hardware of many electro-mechanical systems (such as electric motors) prescribes discontinuous inputs, SMC has become the natural choice for direct implementation. The book is intended primarily for engineers and establishes an interdisciplinary bridge between control science, electrical and mechanical engineering.

Sensorless Speed Control of Permanent Magnet Synchronous Motor This book gathers papers presented during the 4th International Conference on Electrical Engineering and Control Applications. It covers new control system models, troubleshooting tips and complex system requirements, such as increased speed, precision and remote capabilities. Additionally, the papers discuss not only the engineering aspects of signal processing and various practical issues in the broad field of information transmission, but also novel technologies for communication networks and modern antenna design. This book is intended for researchers, engineers and advanced postgraduate students in the fields of control and electrical engineering, computer science and signal processing, as well as mechanical and chemical engineering.

Recent Advances in Robust Control

Numerical Analysis

Sustainable Communication Networks and Application This book describes the development of an adaptive state observer using a mathematical model to achieve high performance for sensorless induction motor drives. This involves first deriving an expression for a modified gain rotor flux observer with a parameter adaptive scheme to estimate the motor speed accurately and improve the stability and performance of sensorless vector-controlled induction motor drives. This scheme is then applied to the controls of a photovoltaic-motor water-pumping system, which results in improved dynamic performance under different operating conditions. The book also presents a robust speed controller design for a sensorless vector-controlled induction motor drive system based on H∞ theory, which overcomes the problems of the classical controller.

Proceedings of the 4th International Conference on Electrical Engineering and Control Applications Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives. This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control strategies. The book presents a practical computer simulation model of the induction motor that could be used for studying various induction motor drive operations. The control strategies explored include expert-system-based acceleration control, hybrid-fuzzy/PI two-stage control, neural-network-based direct self control, and genetic algorithm based extended Kalman filter for rotor speed estimation. There are also chapters on neural-network-based parameter estimation, genetic-algorithm-based optimized random PWM strategy, and experimental investigations. A chapter is provided as a primer for readers to get started with simulation studies on various AI techniques. Presents major artificial intelligence techniques to induction motor drives Uses a practical simulation approach to get interested readers started on drive development. Authored by experienced scientists with over 20 years of experience in the field Provides numerous examples and the latest research results Simulation programs available from the book's Companion Website This book will be invaluable to graduate students and research engineers who specialize in electric motor drives, electric
vehicles, and electric ship propulsion. Graduate students in intelligent control, applied electric motion, and energy, as well as engineers in industrial electronics, automation, and electrical transportation, will also find this book helpful. Simulation materials available for download at www.wiley.com/go/chanmotor

Harmony Search and Nature Inspired Optimization Algorithms This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.

Advances in Neural Networks - ISNN 2014 For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.

Sensorless Speed Control of Vector Controlled Reluctance Synchronous Motor Drives Robust control has been a topic of active research in the last three decades culminating in H_2/H_∞ and μ design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics.

Sensorless Zero Speed Control of Induction Motors In recent years, vector-controlled a.c. drives have taken over from more conventional d.c. drives. Vas examines the sensorless vector-controlled drives and direct torque-controlled drives, and looks at their applications.

Sliding Mode Control in Electro-mechanical Systems The proceedings covers advanced and multidisciplinary research on design of smart computing and informatics. The theme of the book broadly focuses on various innovation paradigms in system knowledge, intelligence and sustainability that may be applied to provide realistic solution to varied problems in society, environment and industries. The volume publishes quality work pertaining to the scope of the conference which is extended towards deployment of emerging computational and knowledge transfer approaches, optimizing solutions in varied disciplines of science, technology and healthcare.

Power Electronics and Electric Drives for Traction Applications Power Electronics and Electric Drives for Traction Applications offers a practical approach to understanding power electronics applications in transportation systems ranging from railways to electric vehicles and ships. It is an application-oriented book for the design and development of traction systems accompanied by a description of the core technology. The first four introductory chapters describe the common knowledge and background required to understand the preceding chapters. After that, each application-specific chapter: highlights the significant manufacturers involved; provides a historical account of the technological evolution experienced; distinguishes the physics and mechanics; and where possible, analyses a real life example and provides the necessary models and simulation tools, block diagrams and simulation based validations. Key features: Surveys power electronics state-of-the-art in all aspects of traction applications. Presents vital design and development knowledge that is extremely important for the professional community in an original, simple, clear and complete manner. Offers design guidelines for power electronics traction systems in high-speed rail, ships, electric/hybrid vehicles, elevators and more applications. Application-specific chapters co-authored by traction industry expert. Learning supplemented by tutorial sections, case studies and MATLAB/Simulink-based simulations with data from practical systems. A valuable reference for application engineers in traction industry responsible for design and development of products as well as traction industry researchers, developers and graduate students on power electronics and motor drives.
High-Gain Observers in Nonlinear Feedback Control This proceedings book emphasizes adopting artificial intelligence-based and sustainable energy efficiency integrated with clear objectives, to involve researchers, students, and specialists in their development and implementation adequately in achieving objectives. The integration of artificial intelligence into renewable energetic systems would allow the rapid development of a knowledge-based economy suitable to the energy transition, while fully integrating the renewables into the global economy. This is how artificial intelligence has hand in by conceptualizing this transition and above all by saving time. The knowledge economy is valued within the smart cities, which are fast becoming the favorite places where the energy transition will take place efficiently and intelligently by implementing integrated approaches to energy saving and energy supply and integrated urban approaches that go beyond individual interventions in buildings or transport modes using information and communication technologies.

SPEED ESTIMATION TECHNIQUES FOR SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR DRIVE.

Sensorless Vector and Direct Torque Control This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous machines and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer-controller schemes based on backstepping and sliding-mode techniques are described. Experimental results validate the performance of these observer and controller configurations with test trajectories of significance in difficult sensorless-AC-machine problems. Control engineers working with AC motors in a variety of industrial environments will find the space-and-cost-saving ideas detailed in Sensorless AC Electric Motor Control of much interest. Academic researchers and graduate students from electrical, mechanical and control-engineering backgrounds will be able to see how advanced theoretical control can be applied in meaningful real systems.

Optimization and Control of Electrical Machines

Smart Intelligent Computing and Applications This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives.

Fuzzy Logic Based Exact Sensorless Speed Control of Induction Motor at Low Range of Operations The volume LNCS 8866 constitutes the refereed proceedings of the 11th International Symposium on Neural Networks, ISNN 2014, held in Hong Kong and Macao, China on November/ December 2014. The 71 revised full papers presented were carefully reviewed and selected from 119 submissions. These papers cover all major topics of the theoretical research, empirical study and applications of neural networks research as follows. The focus is on following topics such as analysis, modeling, and applications.

Advanced Control Systems for Electric Drives This book is all about running a brushless DC motor using a sensorless technique. The target of the work was to make a very simple operating method for a brushless motor and formulate a speed control mechanism. Initially the work was started with both considering back-EMF and without considering back-EMF. Because of more complexity in the back-EMF sensing method, and as our intention was to make a simpler and cost effective operation, so finally we assembled our project the without back-EMF sensing. Even though being a simple and inexpensive machine, the performance was quite good. However adding back-EMF sensing in this machine can give it more dependability.

TABLE OF CONTENTS: DECLARATION APPRAISAL ACKNOWLEDGEMENT III LIST OF FIGURES VII ABSTRACT XCHAPTER 1 INTRODUCTION 101.1. Introduction 101.2. Historical Background 101.3. Advantage over Traditional Method 111.4. Objective of this Work 121.4.1. Primary objectives 121.4.2. Secondary Objectives 121.5. Introduction to this Thesis 12CHAPTER 2 BRUSHLESS DC MOTOR 142.1. Introduction 142.2. Comparison of Brushless motor with brushed motors 152.3. Structure of a BLDC 152.3.1. Stator 162.3.2. Rotor 172.4. Operating Principle 182.4.1. Sensorless Commutation 192.4.2. Conventional Control Method Using Hall-effect Sensors 202.4.3. Sensorless Control 222.5. Applications 232.6. Summary 24CHAPTER 3 MOTOR DRIVE 25SYSTEMS 253.1. Introduction 253.2. Components of Drive Electronics 253.3. Inverter 263.3.1. Three-Phase Inverter 263.3.1.1. 120-Degree Conduction 273.3.1.2. 180-Degree Conduction 293.4. Speed Control Techniques 303.4.1. Open Loop Speed Control 313.4.2. Closed Loop Speed Control 313.4.2.1. Proportional-Integral (PI) Controller 323.5. PWM based Methods 333.5.1. Conventional 120° PWM technique 333.5.2. PWM

Download Free Sensor Less Speed Control Of Pmsm Using Svpwm Technique needing a reference to the application examples.
Applied Intelligent Control of Induction Motor Drives: The two-volume set LNAI 8856 and LNAI 8857 constitutes the proceedings of the 13th Mexican International Conference on Artificial Intelligence, MICAI 2014, held in Tuxtla, Mexico, in November 2014. The total of 87 papers plus 1 invited talk presented in these proceedings were carefully reviewed and selected from 348 submissions. The first volume deals with advances in human-inspired computing and its applications. It contains 44 papers structured into seven sections: natural language processing, natural language processing applications, opinion mining, sentiment analysis, and social network applications, computer vision, image processing, logic, reasoning, and multi-agent systems, and intelligent tutoring systems. The second volume deals with advances in nature-inspired computation and machine learning and contains also 44 papers structured into eight sections: genetic and evolutionary algorithms, neural networks, machine learning, machine learning applications to audio and text, data mining, fuzzy logic, robotics, planning, and scheduling, and biomedical applications.

Neural and Fuzzy Logic Control of Drives and Power Systems

Sensorless Speed Control of Induction Motors Using Sliding Mode Control Strategy: An interesting alternative for today's high efficiency variable speed drives is the Permanent Magnet-Assisted Synchronous Reluctance Motor drive, which belongs to the family of brushless synchronous AC motor drives. Generally, the reluctance torque of this motor is significant compared to the Permanent Magnet electrical torque. The advantage of increased reluctance torque is the decreased need of expensive permanent magnet (PM) material, which makes this solution thus cheaper than the respective permanent magnet motor. Also due to its synchronous operation, sensorless rotational control is possible along with higher power factor and better efficiency compared to the induction motor (IM). Therefore, this thesis first deals with the implementation of a vector control strategy for speed control of the PMa-synRM motor that can be applied to a washing machine application. The machine is supplied by a current controlled voltage source PWM inverter to control the instantaneous stator currents which are decided by the reference speed. Secondly, the thesis focuses on the sensorless speed operation of the PMa-SynRM to take advantage of the lower costs as well as increased system reliability which otherwise is not possible using the delicate speed or position sensors. The concept involves estimation of the rotor speed and/or position. There are several speed estimation techniques proposed by researchers and among them the observer based technique is proven and commonly used in the industry. The only requirements of the observer system are a very fast signal processor, specialized and optimized to perform complex mathematical calculations. The feasibility and effectiveness of the control techniques are verified using the experimental results, implemented using the Texas Instruments TMS320F2812 eZDSP controller board and the overall motor drive system in the laboratory.

Nonlinear Sensorless Indirect Adaptive Position and Speed Control of Induction Motor with Unknown Rotor Resistance

Copyright code: a3aaea1006c428cdc9125f77ea320ea7