Radar Systems Analysis And Design Using Matlab Third Edition

83fdef6e0b6da1f39fclf1fa59c4fac41

Radar RF Circuit Design
Phased-Array Radar Design
Introduction to Radar Analysis
Radar System Design and Analysis
Design and Analysis of Modern Tracking Systems
Radar Signal Analysis and Processing Using MATLAB
MATLAB Simulations for Radar Systems Design
MATLAB System Analysis and Design Using MATLAB
Fundamentals of Multisite Radar Systems
Radar Analysis and Design Using MATLAB Second Edition
Stepped-Frequency Radar Sensors
Waveform Design and Diversity for Advanced Radar Systems
Radar Range-performance Analysis
System Engineering Analysis, Design, and Development
Ultrawideband Radar
Basic Radar Analysis, Second Edition
Radar Systems Analysis and Design Using MATLAB
Fundamental Principles of Radar Design
Technology of Synthetic Aperture Radar
Introduction to Radar Using Python and MATLAB
Modern Radar System Analysis
Fundamentals of Radar Signal Processing
Deep Neural Network Design for Radar Applications
Radar System Analysis, Design, and Simulation
Time-Domain Ultra-Wideband Radar, Sensor and Components
Phase Noise Analysis in Radar Systems Using Personal Computers
Signal Processing for Multistatic Radar Systems
Handbook of Radar Signal Analysis
Signal Processing Algorithms for Communication and Radar Systems
Small and Short-Range Radar Systems
Signal Processing in Radar Systems Design of Multi-Frequency CW Radars
Radar Systems, Peak Detection and Tracking
Detection and Estimation for Communication and Radar Systems
Introduction to Ultra-Wideband Radar Systems
Radar
Where To Download Radar Systems Analysis And Design Using Matlab Third Edition

Systems Principles

Radar RF Circuit Design

Phased-Array Radar Design

Introduction to Radar Analysis, Second Edition is a major revision of the popular textbook. It is written within the context of communication theory as well as the theory of signals and noise. By emphasizing principles and fundamentals, the textbook serves as a vital source for students and engineers. Part I bridges the gap between communication, signal analysis, and radar. Topics include modulation techniques and associated Continuous Wave (CW) and pulsed radar systems. Part II is devoted to radar signal processing and pulse compression techniques. Part III presents special topics in radar systems including radar detection, radar clutter, target tracking, phased arrays, and Synthetic Aperture Radar (SAR). Many new exercise are included and the author provides comprehensive easy-to-follow mathematical derivations of all key equations and formulas. The author has worked extensively for the U.S. Army, the U.S. Space and Missile Command, and other military agencies. This is not just a textbook for senior level and graduates students, but a valuable tool for practicing radar engineers. Features Authored by a leading industry radar professional. Comprehensive up-to-date coverage of radar systems analysis issues. Easy to follow mathematical derivations of all equations and formulas Numerous graphical plots and table format outputs. One part of the book is dedicated to radar waveforms and radar signal processing.

Introduction to Radar Analysis
This introductory reference covers the technology and concepts of ultra-wideband (UWB) radar systems. It provides up-to-date information for those who design, evaluate, analyze, or use UWB technology for any application. Since UWB technology is a developing field, the authors have stressed theory and hardware and have presented basic principles and concepts to help guide the design of UWB systems. Introduction to Ultra-Wideband Radar Systems is a comprehensive guide to the general features of UWB technology as well as a source for more detailed information.

Radar System Design and Analysis

Praise for the first edition: “This excellent text will be useful to every system engineer (SE) regardless of the domain. It covers ALL relevant SE material and does so in a very clear, methodical fashion. The breadth and depth of the author's presentation of SE principles and practices is outstanding.” – Philip Allen

This textbook presents a comprehensive, step-by-step guide to System Engineering analysis, design, and development via an integrated set of concepts, principles, practices, and methodologies. The methods presented in this text apply to any type of human system -- small, medium, and large organizational systems and system development projects delivering engineered systems or services across multiple business sectors such as medical, transportation, financial, educational, governmental, aerospace and defense, utilities, political, and charity, among others. Provides a common focal point for “bridging the gap” between and unifying System Users, System Acquirers, multi-discipline System Engineering, and Project, Functional, and Executive Management education, knowledge, and decision-making for developing systems, products, or services Each chapter provides definitions of key terms, guiding principles, examples, author’s notes, real-world examples, and exercises, which highlight
and reinforce key SE&D concepts and practices. Addresses concepts employed in Model-Based Systems Engineering (MBSE), Model-Driven Design (MDD), Unified Modeling Language (UMLTM)/Systems Modeling Language (SysMLTM), and Agile/Spiral/V-Model Development such as user needs, stories, and use cases analysis; specification development; system architecture development; User-Centric System Design (UCSD); interface definition & control; system integration & test; and Verification & Validation (V&V). Highlights/introduces a new 21st Century Systems Engineering & Development (SE&D) paradigm that is easy to understand and implement. Provides practices that are critical staging points for technical decision making such as Technical Strategy Development; Life Cycle requirements; Phases, Modes, & States; SE Process; Requirements Derivation; System Architecture Development, User-Centric System Design (UCSD); Engineering Standards, Coordinate Systems, and Conventions; et al. Thoroughly illustrated, with end-of-chapter exercises and numerous case studies and examples, Systems Engineering Analysis, Design, and Development, Second Edition is a primary textbook for multi-discipline, engineering, system analysis, and project management undergraduate/graduate level students and a valuable reference for professionals.

Design and Analysis of Modern Tracking Systems

Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.

Radar Signal Analysis and Processing Using MATLAB
Signal Processing for Multistatic Radar Systems: Adaptive Waveform Selection, Optimal Geometries and Pseudolinear Tracking Algorithms addresses three important aspects of signal processing for multistatic radar systems, including adaptive waveform selection, optimal geometries and pseudolinear tracking algorithms. A key theme of the book is performance optimization for multistatic target tracking and localization via waveform adaptation, geometry optimization and tracking algorithm design. Chapters contain detailed mathematical derivations and algorithmic development that are accompanied by simulation examples and associated MATLAB codes. This book is an ideal resource for university researchers and industry engineers in radar, radar signal processing and communications engineering. Develops waveform selection algorithms in a multistatic radar setting to optimize target tracking performance Assesses the optimality of a given target-sensor geometry and designs optimal geometries for target localization using mobile sensors Gives an understanding of low-complexity and high-performance pseudolinear estimation algorithms for target localization and tracking in multistatic radar systems Contains the MATLAB codes for the examples used in the book

Solutions Manual for Radar Systems Analysis And Design Using Matlab

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBS Author Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology involved in the search for Flight 370 on CBS on March 22, 2014. Get His Book Now Coupling theory with reality, from derivation to implementation of actual
Where To Download Radar Systems Analysis And Design Using Matlab Third Edition

radar systems, Small and Short-Range Radar Systems analyzes and then provides design procedures and working design examples of small and short-range radar systems. Discussing applications from automotive to through-wall imaging, autonomous vehicle, and beyond, the practical text supplies high-level descriptions, theoretical derivations, back-of-envelope calculations, explanations of processing algorithms, and case studies for each type of small radar system covered, including continuous wave (CW), ultrawideband (UWB) impulse, linear frequency modulation (FM), linear rail synthetic aperture radar (SAR), and phased array. This essential reference: Explains how to design your own radar devices Demonstrates how to process data from small radar sensors Provides real-world, measured radar data to test algorithms before investing development time Complete with downloadable MATLAB® scripts and actual radar measurements, Small and Short-Range Radar Systems empowers you to rapidly develop small radar technology for your application.

MATLAB Simulations for Radar Systems Design

In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security. Increasingly complex operating scenarios calls for sophisticated algorithms with the ability to adapt and diversify dynamically the waveform to the operating environment in order to achieve a performance gain over classic radar waveforms. Thus, for example, a modern multifunction phased array radar can adapt
the waveform, dwell time and update interval according to the nature of the particular target, e.g. the likely type of target, the clutter environment, the signal-to-noise ratio, the threat that it may represent and the degree to which it is manoeuvring. This is essentially the subject of waveform diversity. This new flexibility demands new ways of characterising waveform properties and optimising waveform design. This ability is very critical in increasing our objective performance as the ability will match the transmission waveform to the transmission environment and the sensing objective. This is the first book, in which several quintessential concepts inherent to the application of waveform design and diversity for advanced radar detection, tracking, and classification are brought together.

Radar Systems Analysis and Design Using MATLAB

This is an original and comprehensive monograph on the increasingly important field of Multistatic Radar Systems. The material covered includes target detection, coordinate and trajectory parameter estimation, optimum and suboptimum detectors and external interferences. The practical problems faced by those working with radar systems are considered - most algorithms are presented in a form allowing direct use in engineering practice, and many of the results can be immediately applied to information systems containing different types of sensors, not only radars. This book is the revised international edition of Chernyak's renowned Russian textbook.

Fundamentals of Multisite Radar Systems

Here's a thorough overview of the state-of-the-art in design and implementation of advanced tracking for single and multiple sensor systems. This practical resource provides modern system designers
Where To Download Radar Systems Analysis And Design Using Matlab Third Edition

and analysts with in-depth evaluations of sensor management, kinematic and attribute data processing, data association, situation assessment, and modern tracking and data fusion methods as applied in both military and non-military arenas.

This highly-anticipated second edition of an Artech House classic covers several key radar analysis areas: the radar range equation, detection theory, ambiguity functions, waveforms, antennas, active arrays, receivers and signal processors, CFAR and chaff analysis. Readers will be able to predict the detection performance of a radar system using the radar range equation, its various parameters, matched filter theory, and Swerling target models. The performance of various signal processors, single pulse, pulsed Doppler, LFM, NLFM, and BPSK, are discussed, taking into account factors including MTI processing, integration gain, weighting loss and straddling loss. The details of radar analysis are covered from a mathematical perspective, with in-depth breakdowns of radar performance in the presence of clutter. Readers will be able to determine the nose temperature of a multi-channel receiver as it is used in active arrays. With the addition of three new chapters on moving target detectors, inverse synthetic aperture radar (ISAR) and constant false alarm rate (CFAR) and new MATLAB codes, this expanded second edition will appeal to the novice as well as the experienced practitioner.

An authoritative text covering the key topics, concepts and analytical tools needed to understand modern communication and
radar systems. With numerous examples, exercises and computational results, it is an invaluable resource for graduate students in electrical and computer engineering, and practitioners in communications and radar engineering.

Stepped-Frequency Radar Sensors

Offering radar-related software for the analysis and design of radar waveform and signal processing, Radar Signal Analysis and Processing Using MATLAB® provides a comprehensive source of theoretical and practical information on radar signals, signal analysis, and radar signal processing with companion MATLAB® code. After an overview of radar systems operation and design, the book reviews elements of signal theory relevant to radar detection and radar signal processing, along with random variables and processes. The author then presents the unique characteristic of the matched filter and develops a general formula for the output of the matched filter that is valid for any waveform. He analyzes several analog waveforms, including the linear frequency modulation pulse and stepped frequency waveforms, as well as unmodulated pulse-train, binary, polyphase, and frequency codes. The book explores radar target detection and pulse integration, emphasizing the constant false alarm rate. It also covers the stretch processor, the moving target indicator, radar Doppler processing, beamforming, and adaptive array processing. Using configurable MATLAB code, this book demonstrates how to apply signal processing to radar applications. It includes many examples and problems to illustrate the practical application of the theory.

Waveform Design and Diversity for Advanced Radar Systems

Advances in DSP (digital signal processing) have radically altered
Where To Download Radar Systems Analysis And Design Using Matlab Third Edition

the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging

Radar Range-performance Analysis

A reference source for phase noise effects on systems and components. Analyzes the effects of phase noise on a radar system's performance and on its major subsystems. Sequence of chapters follows the path of phase noise in a radar system from its generation through its transmission, reception, and processing to its final displayed level. Discusses major radar design areas pertaining to the analysis of phase noise effects on system performance. Includes solved practical problems and computer programs.

System Engineering Analysis, Design, and Development

En lærebog i radarteknik. Beskriver systematisk alle væsentlige sider af radarteknikken.

Ultrawideband Radar

This book helps you master critical system analysis and design skills, and shows you how to use digital computer simulation to verify that an analysis is correct and that a design is optimal. This comprehensive resource covers a wide range of essential topics,
from matrix, vector and linear equations, noise and clutter generation, Filters (FIR and IIR), and fast Fourier transforms to ambiguity functions, antennas, target detection, and the Kalman filter to the Monte Carlo method, constant false alarm rate (CFAR) processing, and moving target indicators (MTI).

Basic Radar Analysis, Second Edition

Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications and over 80 analytical and computational end-of-chapter problems make this an ideal resource for both graduate students and professional engineers.

Radar Systems Analysis and Design Using MATLAB

Developed from the author’s graduate-level courses, the first edition of this book filled the need for a comprehensive, self-contained, and hands-on treatment of radar systems analysis and design. It quickly became a bestseller and was widely adopted by many professors. The second edition built on this successful format by rearranging and updating topics and code. Reorganized, expanded, and updated, Radar Systems Analysis and Design Using MATLAB®, Third Edition continues to help graduate students and engineers understand the many issues involved in radar systems design and analysis. Each chapter includes the mathematical and analytical coverage necessary for obtaining a solid understanding
Fundamental Principles of Radar

Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

Design Technology of Synthetic Aperture Radar

Simulation is integral to the successful design of modern radar systems, and there is arguably no better software for this purpose than MATLAB. But software and the ability to use it does not guarantee success. One must also: Understand radar operations and design philosophy Know how to select the radar parameters to meet the design req

Introduction to Radar Using Python and MATLAB

Since the publication of the second edition of "Introduction to
Radar Systems," there has been continual development of new radar capabilities and continual improvements to the technology and practice of radar. This growth has necessitated the addition and updating of the following topics for the third edition: digital technology, automatic detection and tracking, doppler technology, airborne radar, and target recognition. The topic coverage is one of the great strengths of the text. In addition to a thorough revision of topics, and deletion of obsolete material, the author has added end-of-chapter problems to enhance the "teachability" of this classic book in the classroom, as well as for self-study for practicing engineers.

Modern Radar System Analysis

This comprehensive resource provides readers with the tools necessary to perform analysis of various waveforms for use in radar systems. It provides information about how to produce synthetic aperture (SAR) images by giving a tomographic formulation and implementation for SAR imaging. Tracking filter fundamentals, and each parameter associated with the filter and how each affects tracking performance are also presented. Various radar cross section measurement techniques are covered, along with waveform selection analysis through the study of the ambiguity function for each particular waveform from simple linear frequency modulation (LFM) waveforms to more complicated coded waveforms. The text includes the Python tool suite, which allows the reader to analyze and predict radar performance for various scenarios and applications. Also provided are MATLAB® scripts corresponding to the Python tools. The software includes a user-friendly graphical user interface (GUI) that provides visualizations of the concepts being covered. Users have full access to both the Python and MATLAB source code to modify for their application. With examples using the tool suite are given at the end of each chapter,
where to download radar systems analysis and design using matlab third edition

this text gives readers a clear understanding of how important target scattering is in areas of target detection, target tracking, pulse integration, and target discrimination.

fundamentals of radar signal processing

This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered. This work represents the first time that the topic of multi-frequency radars is discussed in such detail and it is based on research conducted by the author in The Netherlands. The book provides the design tools needed for development, design, and analysis of high resolution radar systems for commercial as well as military applications. Software written in MATLAB and C++ is provided to guide the reader in calculating radar parameters and in ambiguity function analysis. Some radar simulation software is also included.

deep neural network design for radar applications

The important and fascinating topics of radar enjoy an extensive audience in industry and government but deserve more attention in undergraduate education to better prepare graduating engineers to meet the demands of modern mankind. Radar is not only one of the major applications of electronics and electromagnetic communications, but it is also a mature scientific discipline with significant theoretical and mathematical foundations that warrant an intellectual and educational challenge. Fundamental Principles of Radar is a textbook providing a first exposure to radar principles. It provides a broad concept underlying the basic principle of operations of most existing radar systems and maintains a good balance of mathematical rigor to convince
readers without losing interest. The book provides an extensive exposition of the techniques currently being used for radar system design, analysis, and evaluation. It presents a comprehensive set of radar principles, including all features of modern radar applications, with their underlying derivations using simple mathematics. Coverage is limited to the main concepts of radar in order to present them in a systematic and organized fashion. Topics are treated not as abstruse and esoteric to the point of incomprehensibility, but the very complex and rich technology of radar is distilled into its fundamentals. The author’s emphasis is on clarity without sacrificing rigor and completeness, thus making the book broad enough to satisfy a variety of backgrounds and interests. Thorough documentation provides an unusual degree of completeness for a textbook at this level, with interesting and sometimes thought-provoking content to make the subject even more appealing. Key Features: Covers a wide range of topics in radar systems Includes examples and exercises to reinforce the concepts presented and explain their applications Provides self-contained chapters useful for readers seeking selective topics Provides broad concepts underlying the basic principles of operations of most types of radars in use today Includes documentation to lead to further reading of interesting concepts and applications.

Radar System Analysis, Design, and Simulation

In planning a radar system, having the proper mathematical modeling of propagation effects, clutter, and target statistics is essential. Radar Systems Principles provides a strong theoretical basis for the myriad of formulas and rules of thumb required for analysis, conceptual design, and performance evaluation of radar systems. Mathematical derivations of formulas commonly used by radar engineers are presented, with detailed discussions of the assumptions behind these expressions and their ranges of validity.
These principles are used in a wide range of radar applications. Radar Systems Principles makes it easy to understand the steps in calculating various formulas and when and how these formulas are used. A set of problems is provided for each chapter, enabling you to check your progress in applying the principles discussed in each section of the text. There are more than 170 figures illustrating key concepts. Numerous references to well-known books on radar for coverage of practical design issues and other specialized topics are given. Radar Systems Principles is an ideal textbook for advanced undergraduates and first-year graduate students and also makes an excellent vehicle for self-study by engineers wishing to enhance their understanding of radar principles and their implication in actual systems.

Introduction to Radar Systems

Developed from the author’s graduate-level courses, the first edition of this book filled the need for a comprehensive, self-contained, and hands-on treatment of radar systems analysis and design. It quickly became a bestseller and was widely adopted by many professors. The second edition built on this successful format by rearranging and updating Radar System Analysis and Modeling

A thorough update to the Artech House classic Modern Radar Systems Analysis, this reference is a comprehensive and cohesive introduction to radar systems design and performance estimation. It offers you the knowledge you need to specify, evaluate, or apply radar technology in civilian or military systems. The book presents accurate detection range equations that let you realistically estimate radar performance in a variety of practical situations. With its clear, easy-to-understand language, you quickly learn the
tradeoffs between choice of wavelength and radar performance and see the inherent advantages and limitations associated with each radar band. You find modeling procedures to help you analyze enemy systems or evaluate radar integrated into new weapon systems. The book covers ECM and ECCM for both surveillance and tracking to help you estimate the effects of active and passive ECM, select hardware/software for reconnaissance or jamming, and plan the operation of EW systems. As radar systems evolve, this book provides the equations needed to calculate and evaluate the performance of the latest advances in radar technology.

Time-Domain Ultra-Wideband Radar, Sensor and Components

This book presents the basic principles, analyses, design formulas, and characteristics of various fin-line configurations. You'll find summaries of hundreds of rigorous formulas as well as approximate closed-form expressions, which can be readily programmed to generate design data for any structure. Discover millimeter-wave integrated circuits and components realized using the various fin-line techniques presented in the text, including directional couplers, power dividers, attenuators, detectors, modulators, and oscillators. An Artech House bestseller!

Phase Noise Analysis in Radar Systems Using Personal Computers

An introduction to radar systems should ideally be self-contained and hands-on, a combination lacking in most radar texts. The first edition of Radar Systems Analysis and Design Using MATLAB®
Where To Download Radar Systems Analysis And Design Using Matlab Third Edition

provided such an approach, and the second edition continues in the same vein. This edition has been updated, expanded, and reorganized to include advances in the field and to be more logical in sequence. Ideal for anyone encountering the topic for the first time or for professionals in need of on-the-job reference, this book features an abundance of MATLAB programs and code. Radar Systems Analysis and Design Using MATLAB®, Second Edition presents the fundamentals and principles of radar along with enough rigorous mathematical derivations to ensure that you gain a deep understanding. The author has extensively revised chapters on radar cross-section and polarization, matched filter and radar ambiguity function, and radar wave propagation. He also added information on topics such as PRN codes, multipath and refraction, clutter and MTI processing, and high range resolution. With all MATLAB functions updated to reflect version 7.0 and an expanded set of self-test problems, you will find this up-to-date text to be the most complete treatment of radar available, providing the hands-on tools that will enrich your learning.

Handbook of Radar Signal Analysis

This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the
development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing. Chapter 5 provides the electrical characterization and test results of the developed microwave and millimeter-wave stepped-frequency radar sensors. Finally, a summary and conclusion is provided.

Signal Processing Algorithms for Communication and Radar Systems

This authoritative new resource presents practical techniques for optimizing RF and microwave circuits for applications in radar systems design with an emphasis on current and emerging technologies. Professionals learn how to design RF components for radar systems and how to choose appropriate materials and packaging methods. This book explains how to integrate components while avoiding higher-level assembly issues and troubleshooting problems on the measurement bench. Theory and practical information are provided while addressing topics ranging from heat removal to digital circuit integration. This book is divided into three sections: the first section introduces the basics of microwave design, including transmission line theory and common materials used in RF circuits. The methods for creating accurate device models for both passive and active circuits are presented. The second part details the design of power amplifiers, low noise amplifiers, and passive elements. Both conventional and state-of-the-art design techniques are included with ample ‘tips and tricks.’ The last section concludes with a focus on component integration providing details on design methods for military operations, high manufacturing yield, and preventing measurement issues.

Small and Short-Range Radar Systems
This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design chapter addresses the design and measurement of the strobe pulse generator, sampling mixer, low-noise amplifier and synchronous sampling receiver. Next, the UWB Antenna Design chapter details the design and measurement of two UWB antennas: the microstrip quasi-horn antenna and the UWB uniplanar antenna. The System Integration and Test chapter covers the transmission-reception test, signal processing, system integration, and evaluation of the UWB sensor. The final chapter provides a summary and conclusion of the work.

Signal Processing in Radar Systems

An essential task in radar systems is to find an appropriate solution to the problems related to robust signal processing and the definition of signal parameters. Signal Processing in Radar Systems addresses robust signal processing problems in complex radar systems and digital signal processing subsystems. It also tackles the
important issue of defining signal parameters. The book presents problems related to traditional methods of synthesis and analysis of the main digital signal processing operations. It also examines problems related to modern methods of robust signal processing in noise, with a focus on the generalized approach to signal processing in noise under coherent filtering. In addition, the book puts forth a new problem statement and new methods to solve problems of adaptation and control by functioning processes.

Taking a systems approach to designing complex radar systems, it offers readers guidance in solving optimization problems. Organized into three parts, the book first discusses the main design principles of the modern robust digital signal processing algorithms used in complex radar systems. The second part covers the main principles of computer system design for these algorithms and provides real-world examples of systems. The third part deals with experimental measurements of the main statistical parameters of stochastic processes. It also defines their estimations for robust signal processing in complex radar systems. Written by an internationally recognized professor and expert in signal processing, this book summarizes investigations carried out over the past 30 years. It supplies practitioners, researchers, and students with general principles for designing the robust digital signal processing algorithms employed by complex radar systems.

Design of Multi-Frequency CW Radars

This new handbook on radar signal analysis adopts a deliberate and systematic approach. It uses a clear and consistent level of delivery while maintaining strong and easy-to-follow mathematical details. The emphasis of this book is on radar signal types and their relevant signal processing and not on radar systems hardware or components. This handbook serves as a valuable reference to a wide range of audience. More specifically, college-level students,
practicing radar engineers, as well as casual readers of the subject are the intended target audience of the first few chapters of this book. As the book chapters progress, these grow in complexity and specificity. Accordingly, later chapters are intended for practicing engineers, graduate college students, and advanced readers. Finally, the last few chapters contain several special topics on radar systems that are both educational and scientifically entertaining to all readers. The presentation of topics in this handbook takes the reader on a scientific journey whose major landmarks comprise the different radar subsystems and components. In this context, the chapters follow the radar signal along this journey from its birth to the end of its life. Along the way, the different relevant radar subsystems are analyzed and discussed in great detail. The chapter contributors of this new handbook comprise experienced academia members and practicing radar engineers. Their combined years of academic and real-world experiences are in excess of 175. Together, they bring a unique, easy-to-follow mix of mathematical and practical presentations of the topics discussed in this book. See the "Chapter Contributors" section to learn more about these individuals.

Radar Systems, Peak Detection and Tracking

As well as being fully up-to-date, this book provides wider subject coverage than many other radar books. The inclusion of a chapter on Skywave Radar, and full consideration of HF / OTH issues makes this book especially relevant for communications engineers and the defence sector. * Explains key theory and mathematics from square one, using case studies where relevant * Designed so that mathematical sections can be skipped with no loss of continuity by those needing only a qualitative understanding * Theoretical content, presented alongside applications, and working examples, make the book suitable to students or others new to the subject as
Detection and Estimation for Communication and Radar Systems

An authoritative work on Synthetic Aperture Radar system engineering, with key focus on high resolution imaging, moving target indication, and system engineering technology Synthetic Aperture Radar (SAR) is a powerful microwave remote sensing technique that is used to create high resolution two or three-dimensional representations of objects, such as landscapes, independent of weather conditions and sunlight illumination. SAR technology is a multidisciplinary field that involves microwave technology, antenna technology, signal processing, and image information processing. The use of SAR technology continues grow at a rapid pace in a variety of applications such as high-resolution wide-swath observation, multi-azimuth information acquisition, high-temporal information acquisition, 3-D terrain mapping, and image quality improvement. Design Technology of Synthetic Aperture Radar provides detailed coverage of the fundamental concepts, theories, technology, and design of SAR systems and sub-systems. Supported by the author’s over two decades of research and practice experience in the field, this in-depth volume systematically describes SAR design and presents the latest research developments. Providing examination of all topics relevant to SAR—from radar and antenna system design to receiver technology and signal and image information processing—this comprehensive resource: Provides wide-ranging, up-to-date examination of all major topics related to SAR science, systems, and software Includes guidelines to conduct grounding system designs and analysis Offers coverage of all SAR algorithm classes and detailed SAR algorithms suitable for enabling software implementations Surveys SAR and computed imaging literature of
the last sixty years Emphasizes high resolution imaging, moving target indication, and system engineering Design Technology of Synthetic Aperture Radar is indispensable for graduate students majoring in SAR system design, microwave antenna, signal and information processing as well as engineers and technicians involved in SAR system techniques.

Introduction to Ultra-Wideband Radar Systems

An introduction to radar systems should ideally be self-contained and hands-on, a combination lacking in most radar texts. The first edition of Radar Systems Analysis and Design Using MATLAB provided such an approach, and the second edition continues in the same vein. This edition has been updated, expanded, and reorganized to include advances in t

Radar Systems Principles

Providing a practical review of the latest technology in the field, Ultrawideband Radar Applications and Design presents cutting-edge advances in theory, design, and practical applications of ultrawideband (UWB) radar. This book features contributions from an international team of experts to help readers learn about a wide range of UWB topics, including: History of the technology American and European governmental regulations and key definitions Nonsinusoidal wave propagation theory Random signal radar Object detection by ground permittivity measurements Large-target backscattering effects Medical applications Large current radiator antenna design Materials-penetrating theory Radar signal processing Weak-signal detection methods Holographic and real time radar imaging This book’s contributors use practical information to illustrate the latest theoretical developments and demonstrate UWB radar principles through case studies. Radar
system engineers will find ideas for precision electronic sensing systems for use in medical, security, industrial, construction, and geophysical applications, as well as those used in archeological, forensic and transportation operations.