the literature. It brings together the major approaches to regenerative medicine in one text, which ensures that techniques learnt in one discipline are disseminated across other areas of medicine.

Handbook of Stem Cells

A discussion of all the key issues in the use of human pluripotent stem cells for treating degenerative diseases or for replacing tissues lost from trauma. On the practical side, the topics range from the problems of deriving human embryonic stem cells and driving their differentiation along specific lineages, regulating their development into mature cells, and bringing stem cell therapy to clinical trials. Regulatory issues are addressed in discussions of the ethical debate surrounding the derivation of human embryonic stem cells and the current policies governing their use in the United States and abroad, including the rules and conditions regulating federal funding and questions of intellectual property.

Stem Cells in Regenerative Medicine: Carpe Diem – Carpe Vitam!

This book discusses critical areas of progress in stem cell research, including the most recent research and applications of pluripotent embryonic cells, induced pluripotent cells, oligopotent tissue stem cells and cancer stem cells. The text covers basic knowledge of stem cell biology, stem cell ethics, development of techniques for applying stem cell therapy, the technology of obtaining appropriate cells for transplantation as well as the role of stem cells in cancer and how therapy may be directed to cancer stem cells. This new volume is essential reading for all scientists currently in the field or allied research areas, and those for those graduate students who envision a career in stem cells.

Stem Cell and Gene-Based Therapy

Discusses the ethical issues involved in the use of human embryonic stem cells in regenerative medicine.

Regenerative Medicine

The ability of foetal tissue to heal without scarring is now well documented, but the potentially far-reaching implications of this process
for the practice of surgery and the management of healing are just beginning to be understood. This book provides up-to-date information on the subject.

Perinatal Stem Cells

This comprehensive volume is one of the first books to offer the reader detailed insight into sources of perinatal stem cells, their biology, and their potential for disease treatment. It examines the research and therapeutic applications of perinatal stem cells including the treatment of renal disease, hematopoietic regeneration, cardiac disease, inflammatory disease, bone regeneration, pulmonary disease, and the treatment of spinal cord injury. Further, the book discusses current progress in the manufacturing, banking and clinical translation of perinatal stem cells. Through this book, readers will gain a thorough understanding of the current pre-clinical and clinical applications of perinatal stem cells as well as the efforts to support the transition of perinatal stem cell therapies from laboratories to clinics. Perinatal Stem Cells contains thirty-two chapters written by internationally recognized leaders in stem cell research. It is organized into four sections covering amniotic fluid stem cells, placental and placental membrane stem cells, umbilical cord stem cells, and clinical translation. This cohesive structure provides an effective framework for detailed insight into this new frontier. Edited by Dr. Anthony Atala, one of the foremost experts in the field, and his co-editor Dr. Sean V. Murphy, this volume is a definitive work for stem cell research and its future implications. It is a key resource for all stem cell researchers, clinicians, and government and industry staff working in this dynamic and exciting field.

Frontiers in Stem Cell and Regenerative Medicine Research

This book provides a comprehensive introduction to various types of perinatal stem cells. Given their unique regenerative abilities, stem cells offer a promising avenue in the treatment of degenerative diseases or injury. Currently, the limitations of postnatal cell sources and expanding efficiency may limit autologous stem cell therapies. Although embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be cultured indefinitely ex vivo, and can differentiate into three germ layers, ethical issues, the teratoma formation of ESCs and oncogenic risk of iPSCs are major obstacles to their clinical application. More recently, perinatal stem cells have been isolated from the umbilical cord, Wharton’s Jelly, placenta, amniotic membrane and amniotic fluid, which are normally discarded as medical waste. This book, after describing perinatal stem cells in detail, introduces readers to the various types of perinatal stem cells, addressing their characterization, banking, quality control and stability. Importantly, it also reviews the clinical applications of perinatal stem cells to therapy of diseases. Accordingly, it offers a valuable resource for clinicians, researchers and graduate students alike.
Stem Cells

The subject of this book is stem cell research and regenerative medicine. Stem cells are undifferentiated cells that have the ability to differentiate into different lineages of the body. Stem cells carry tremendous potential for the treatment of a broad range of disease and injuries. Stem cells exist in embryonic, fetal, and adult tissues, including the adult central nervous system. This book aims at, in depth, the recent developments in stem cell research and regenerative medicine. Though this book encompasses all the fields of stem cell research and regenerative medicine, it emphasises adult neurogenesis and neural stem cell research and therapy.

Perinatal Stem Cells

The commercialization of biotechnology has resulted in an intensive search for new biological resources for the purposes of increasing food productivity, medicinal applications, energy production, and various other applications. Although biotechnology has produced many benefits for humanity, the exploitation of the planet’s natural resources has also resulted in some undesirable consequences such as diminished species biodiversity, climate change, environmental contamination, and intellectual property right and patent concerns. This book discusses the role of biological, ecological, environmental, ethical, and economic issues in the interaction between biotechnology and biodiversity, using different contexts. No other book has discussed all of these issues in a comprehensive manner. Of special interest is their impact when biotechnology is shared between developed and developing countries, and the lack of recognition of the rights of indigenous populations and traditional farmers in developing countries by large multinational corporations.

Stem Cells in the Lung

This book presents a comprehensive overview of the current understanding of the organization of endogenous lung stem and progenitor cell compartments during fetal lung development, postnatal lung growth and in adulthood. Progressing stage by stage, the chapters on fetal lung development emphasize the integrated role of epithelial, stromal, vascular and neural cell elements in building a functional lung, while the subsequent chapters on adult lung regeneration describe the nature and properties of adult lung stem/progenitor cells distributed along the proximal-distal axis of the airway tree. The chapters on regulation of lung regeneration and repair discuss how regenerative cells interact with their niche microenvironment and how regulation of lung regeneration and repair in the steady state and following injury recapitulates ontogeny. And, lastly, the chapters on cellular therapies for lung disease and bioengineering the lung focus on promising emerging therapies and approaches in lung regenerative medicine. The scope of this volume of the Stem Cell Biology and...
Regenerative Medicine series focuses on exploring the topic of building and rebuilding the lung from a cellular rather than a molecular perspective. Thus, the section on cellular therapies does not include extensive coverage of each of the numerous lung diseases, including cancer, which could be amenable to stem cell-based therapies, although the final chapter does include some discussion on the future prospects and challenges. All of the contributors are working on the cutting edge of the lung stem cell field, making this book essential reading for those with an interest in the field of lung stem cell biology and the potential role of cellular therapies and tissue bioengineering approaches in lung regenerative medicine, including biomedical scientists, graduate students, post-graduate researchers and respiratory clinicians.

Perinatal Stem Cells

Defined as, “The science about the development of an embryo from the fertilization of the ovum to the fetus stage,” embryology has been a mainstay at universities throughout the world for many years. Throughout the last century, embryology became overshadowed by experimental-based genetics and cell biology, transforming the field into developmental biology, which replaced embryology in Biology departments in many universities. Major contributions in this young century in the fields of molecular biology, biochemistry and genomics were integrated with both embryology and developmental biology to provide an understanding of the molecular portrait of a “development cell.” That new integrated approach is known as stem-cell biology; it is an understanding of the embryology and development together at the molecular level using engineering, imaging and cell culture principles, and it is at the heart of this seminal book. Stem Cells and Regenerative Medicine: From Molecular Embryology to Tissue Engineering is completely devoted to the basic developmental, cellular and molecular biological aspects of stem cells as well as their clinical applications in tissue engineering and regenerative medicine. It focuses on the basic biology of embryonic and cancer cells plus their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. In addition, it covers other key relevant topics such as nuclear reprogramming induced pluripotency and stem cell culture techniques using novel biomaterials. A thorough introduction to stem-cell biology, this reference is aimed at graduate students, post-docs, and professors as well as executives and scientists in biotech and pharmaceutical companies.

Principles of Regenerative Medicine

Stem Cells and Regenerative Medicine
New discoveries in the field of stem cell research have frequently appeared in the news and in scientific literature. Research in this area promises to lead to new therapies for cancer, heart disease, diabetes, and a wide variety of other diseases. This two-volume reference integrates this exciting area of biology, combining the prerequisites for a general understanding of adult and embryonic stem cells, the tools, methods, and experimental protocols needed to study and characterize stem cells and progenitor populations, as well as a presentation by the world's experts of what is currently known about each specific organ system. The editors of the Handbook of Stem Cells include: Robert Lanza, Helen Blau, John Gearhart, Brigid Hogan, Douglas Melton, Malcolm Moore, Roger Pedersen, E. Donnall Thomas, James Thomson, Catherine Verfaillie, Irving Weissman, and Michael West. The Editorial Board includes: W. French Anderson, Peter Andrews, Anthony Atala, Jose Cibelli, Giulio Cossu, Robert Edwards, Martin Evans, Elaine Fuchs, Margaret Fuller, Fred Gage, Richard Gardner, Margaret Goodell, Ronald Green, William Haseltine, Joseph Itskovitz-Eldor, Rudolf Jaenisch, Ihor Lemischka, Dame Anne McLaren, Richard Mulligan, Stuart Orkin, Martin Pera, Benjamin Reubinoff, Janet Rossant, Hans Scholer, Austin Smith, Evan Snyder, Davor Solter, Alan Trounson, and Leonard Zon. This comprehensive set should be a much-needed addition to the library of students and researchers alike.

Pluripotent Stem Cells

It is pointed out that cancer stem cell is a cell type within a tumor that possesses the capacity of cell-renewal and can give rise to the heterogeneous lineages of cancer cells that comprise the tumor. It is emphasized that a cancer stem cell is a tumor initiating cell. That conventional chemotherapy kills most cells in a tumor, but cancer stem cells remain intact is discussed. Vast applications of stem cells, cancer stem cells, mesenchymal stem cells, and human pluripotent stem cells are discussed. Because human embryonic stem cells possess the potential of producing unlimited quantities of any human cell type, considerable focus is placed on their therapeutic potential in this volume. Because of the pluripotency of embryonic stem cells, this volume discusses various applications such as tissue engineering, regenerative medicine, pharmacological and toxicological uses. The role of these cells in cell differentiation is also included. The role of cancer stem cells of breast, colon, and melanoma tumors in response to antitumor therapy is detailed. The role of cancer stem cells, specifically in the deadliest brain cancer, glioblastoma multiforme, is explained. Transplantation of bone marrow-derived stem cells for myocardial infarction and use of mesenchymal stem cells in orthopedics are described.

Stem Cells and the Future of Regenerative Medicine
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. Key for all researchers and institutions in Stem Cell Biology, Bioengineering, and Developmental Biology The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine New discoveries from leading researchers on restoration of diseased tissues and organs

Stem Cells & Regenerative Medicine

Human embryos, it has been said, "have no muscles, nerves, digestive system, feet, hands, face, or brain; they have nothing to distinguish them as a human being, and if one of them died, no one would mourn as they would for one of us." Consequently, early human embryos are being dismembered in laboratories around the world to produce embryonic stem cells, which, we are told, are the tools that will lead to the next quantum leap in medicine. Should Christians support such small sacrifices for something that might potentially relieve the suffering of millions, or should we vigorously oppose it? Developmental biologist and professor of biochemistry Michael Buratovich was asked such a question (among others) by his students. This book contains his measured answers and provides support from the scientific literature to substantiate his claims. He shows that embryonic stem cells are unnecessary, since the renaissance in regenerative medicine is occurring largely without them. Furthermore, he sets forth the scientific and historic case that the embryo is the youngest and most vulnerable member of humanity, and that ones such as these are precisely those whom the Christian church worked to protect in the past--and should champion in the present.

Stem Cells Handbook

Pluripotent stem cells have distinct characteristics: self-renewal and the potential to differentiate into various somatic cells. In recent years, substantial advances have been made from basic science to clinical applications. The vast amount knowledge available makes obtaining concise yet sufficient information difficult, hence the purpose of this book. In this book, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells are discussed. The book is divided into five sections: pluripotency, culture methods, toxicology, disease models, and regenerative medicine. The topics covered range from new concepts to current technologies. Readers are expected to gain useful information from expert contributors.
Stem Cell Biology and Regenerative Medicine

Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more and more answers every day. Stem Cells and Tissue Engineering is a concise review on the functional, phenotypic, regenerative, transplantational and curative aspects of a stem cell’s entity. It is critical and encouraging at the same time, providing truthful and appropriate samples from the practice and research that can lead toward optimal use of this immense source of adjuvant and curative therapy in human pathology. Written by a clinician and a researcher, who are currently teaching what they are doing, it is recommended as a teaching tool along with an original textbook.

Fetal Stem Cells in Regenerative Medicine

Human pluripotent stem cells (hPSCs), which cover both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), show promise for drug discovery and regenerative medicine applications. These stem cells cannot be cultured on conventional tissue culture dishes but on biomaterials that have specific interactions with the hPSCs. Differentiation is regulated by the biological and physical cues conferred by the biomaterial. This book provides a systematic treatment of these topics bridging the gap between fundamental biomaterials research of stem cells and their use in clinical trials. The author looks at hPSC culture on a range of biomaterial substrates. Differentiation and control of hESCs and iPSCs into cardiomyocytes, osteoblasts, neural lineages and hepatocytes are covered. The author then considers their translation into stem cell therapies and looks at clinical trials across spinal cord injury, macular degeneration, bone disease and myocardial infarction. Finally, a chapter on future directions closes the book. By using this book, the reader will gain a robust overview of current research and a clearer understanding of the status of clinical trials for stem cell therapies.

Perinatal Tissue-Derived Stem Cells

Page 8/17
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell research—specifically embryonic stem cell research—into the political crosshairs. President Bush’s watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.

Stem Cells and Regenerative Medicine

This book explores the regenerative properties of fetal stem cells, from feto-maternal cell traffic through perinatal stem cells, with a discussion of key topics including stem cell banking, drug screening, in utero stem cell transplantation and ethical considerations. The expertly authored chapters also delve into embryonic, amniotic membrane, and umbilical cord blood stem cells; fetal development models; fetal cell reprogramming; culture methods; disease models; perinatal gene therapy, and more. These chapters are grouped into four sections, each discussing a separate prenatal stem cell population and providing fascinating historical contexts for our knowledge of these systems. Featuring a foreword written by the renowned Dr. Joseph Vacanti of the Harvard Stem Cell Institute, Fetal Stem Cells in Regenerative Medicine: Principles and Translational Strategies is a welcome and timely contribution to the Stem Cell Biology and Regenerative Medicine series. It is essential reading for scientists and researchers, clinicians and residents, and advanced students involved in stem cells, regenerative medicine, tissue engineering, and related disciplines such as embryology.

Therapeutic Application of Allogeneic Fetal Membrane-Derived Mesenchymal Stem Cell Transplantation in Regenerative Medicine
In most of the doctors’ perception the term ‘regenerative medicine’ is associated with tissue reconstruction after severe injuries, burns or trauma.

The Human Embryonic Stem Cell Debate

Stem Cells and Cancer Stem Cells, Volume 3

Stem Cells and Regenerative Medicine

This book covers several aspects of perinatal tissue-derived stem cells, from theoretical concepts to clinical applications. Topics include functions and different sources, immunomodulatory properties, translational point of view, GMP facility design and manufacturing for clinical translation, therapeutic potentials, and finally ethical considerations. The text provides a brief review of each type of perinatal stem cells and then focuses on their multi- or pluripotent properties, regenerative capacity, and future therapeutic potential in regenerative medicine. Additionally, the book discusses GMP compliance in stem cell facilities and the manufacture of stem cells for clinical translation. The chapters are authored by world-renowned experts in the perinatal stem cell field. Perinatal Tissue-Derived Stem Cells: Alternative Sources of Fetal Stem Cells, part of Springer’s Stem Cell Biology and Regenerative Medicine series, is essential reading for basic and clinical scientists, clinicians, and pharmaceutical experts working or conducting research in the fields of stem cell biology, molecular aspects of stem cell research, tissue engineering, regenerative medicine, and cellular therapy.

Stem Cells and Tissue Engineering

First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners, and students embracing the latest advances in stem cells. Representing the combined effort of 7 editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world’s experts of the latest research information about specific organ systems. From basic biology/mechanisms, early development, ectoderm, mesoderm, endoderm, and methods to the application of stem cells to specific human diseases, regulation and ethics, and patient perspectives, no topic in the field of stem cells is left uncovered. Contributions by Nobel Laureates and leading international investigators Includes two entirely new chapters devoted exclusively to induced pluripotent stem (iPS) cells written by the scientists who
Stem Cell Research and Therapeutics

The second edition of Stem Cells: Scientific Facts and Fiction provides the non-stem cell expert with an understandable review of the history, current state of affairs, and facts and fiction of the promises of stem cells. Building on success of its award-winning preceding edition, the second edition features new chapters on embryonic and iPS cells and stem cells in veterinary science and medicine. It contains major revisions on cancer stem cells to include new culture models, additional interviews with leaders in progenitor cells, engineered eye tissue, and xeno organs from stem cells, as well as new information on "organs on chips" and adult progenitor cells. In the past decades our understanding of stem cell biology has increased tremendously. Many types of stem cells have been discovered in tissues that everyone presumed were unable to regenerate in adults, the heart and the brain in particular. There is vast interest in stem cells from biologists and clinicians who see the potential for regenerative medicine and future treatments for chronic diseases like Parkinson's, diabetes, and spinal cord lesions, based on the use of stem cells; and from entrepreneurs in biotechnology who expect new commercial applications ranging from drug discovery to transplantation therapies. Explains in straightforward, non-specialist language the basic biology of stem cells and their applications in modern medicine and future therapy Includes extensive coverage of adult and embryonic stem cells both historically and in contemporary practice Richly illustrated to assist in understanding how research is done and the current hurdles to clinical practice

Stem Cell Repair and Regeneration

Perinatal Stem Cells provides researchers and clinicians with a comprehensive description of the current clinical and pre-clinical applications of stem cells derived from perinatal sources, such as amniotic fluid, placenta and placental membranes, the umbilical cord and Wharton's jelly. It's compiled by leading experts in the field, offering readers detailed insights into sources of perinatal stem cells and their potential for disease treatment. Therapeutic applications of perinatal stem cells include the treatment of in utero and pregnancy related diseases, cardiac disease, liver disease, pulmonary disease, inflammatory diseases, for hematopoietic regeneration, and for neural protection after stroke or traumatic brain injury. In addition, the rapid advance in clinical translation and commercialization of perinatal stem cell therapies is highlighted in a section on Clinical and Industry Perspective which provides insight into the new
opportunities and challenges involved in this novel and exciting industry. Explores current clinical and pre-clinical application of stem cells derived from perinatal sources Offers detailed insight into sources of perinatal stem cells and their potential for disease treatment Discusses progress in the manufacturing, banking and clinical translation of perinatal stem cells Edited by a world-renowned team to present a complete story of the development and promise of perinatal stem cells

CNS Regeneration

This book represents a major contribution to the emerging science of regenerative medicine using non-fetal sources of stem cells. The Editors, Dr Niranjan Bhattacharya and Professor Phillip Stubblefield, have brought together some of the most pre-eminent scientists working on regenerative medicine to share information on currently ongoing work in this area alongside unpublished observations that will help to shape the contours of future therapies. Regenerative Medicine: Using Non-Fetal Sources of Stem Cells discusses the potential clinical and therapeutic applications using non-fetal stem cells as well as providing instruction on the collection, isolation and characterization of stem cells from various non-fetal sources, such as menstrual blood, adipose tissue, breast milk and uprooted decidual teeth. This book will be an invaluable resource for both active researchers and those entering the field. The Editors truly hope that the text will act as a stimulant to professionals and clinical scientists, who may be inspired to further the work of the pioneering scientists who have contributed to this volume.

Fetal Wound Healing

Many diseases earlier considered to be incurable are now being treated with modern innovations involving fetal tissue transplants and stem cells derived from fetal tissues. Fetal tissues are the richest source of fetal stem cells as well as other varying states of differentiated cells and support or stromal cells. The activity of such stem cells is at their peak provided they are given the correct niche. Stem cells, as we know, are immortal cells with the capacity to regenerate into any kind of differentiated cell as per niche-guidance. As such, fetal tissues have the potential capacity to mend, regenerate and repair damaged cells or tissues in adults, when directly transplanted to the site of injury, or even when transplanted in some other site, because it may have a homing capacity to migrate to the site of the specific injured organ. This is a new area of translational research and needs to be highlighted because of its immense potential. This book will bring together the new work of prominent medical scientists and clinicians who are conducting pioneering research in human fetal tissue transplantation. This will include direct transplant of healthy fetal tissue into mature patients as well as in hosts with genetic diseases. Transplant techniques, donor-host interaction, cell and tissue storage, ethical and legal issues, are some of the
many matters which the book will deal with.

Human Fetal Tissue Transplantation

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell research—specifically embryonic stem cell research—into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.

The Stem Cell Epistles

This second edition of CNS Regeneration updates the burgeoning field of regeneration in the Central Nervous System (CNS) from molecular, systems, and disease-based perspective. While the book covers numerous areas in detail, special emphasis is given to discussions of movement disorders such as Parkinson’s disease, Alzheimer’s disease, and spinal cord injury. Incorporates information gained from cutting-edge photomicroscopy techniques Includes current information on clinical trials Presents chapters on stem cells and other novel treatments for diseases of the CNS

Stem Cell and Regenerative Medicine

New discoveries in the field of stem cells increasingly dominate the news and scientific literature revealing an avalanche of new knowledge and research tools that are producing therapies for cancer, heart disease, diabetes, and a wide variety of other diseases that
afflict humanity. The Handbook of Stem Cells integrates this exciting area of life science, combining in two volumes the requisites for a general understanding of adult and embryonic stem cells. Organized in two volumes entitled Pluripotent Stem Cells and Cell Biology and Adult and Fetal Stem Cells, this work contains contributions from the world’s experts in stem cell research to provide a description of the tools, methods, and experimental protocols needed to study and characterize stem cells and progenitor populations as well as the latest information of what is known about each specific organ system. Provides comprehensive coverage on this highly topical subject Contains contributions by the foremost authorities and premiere names in the field of stem cell research Companion website - http://booksite.elsevier.com/9780123859426/ - contains over 250 color figures in presentation format

Human Embryonic Stem Cells

Handbook of Stem Cells, Two-Volume Set

This second book in the Stem Cell Repair and Regeneration series provides a deeper exploration of the therapeutic potential of undifferentiated human stem cells. Regenerative medicine is an extremely fast-moving field which is evolving from the initial days of hype and excitement to a more realistic appraisal of the role of stem cells in the treatment of degenerative disorders. The series aims to keep abreast of these changes by combining new knowledge in stem cell biology and therapeutic applications. The current volume contains papers by the field's leading scientists and explores the current knowledge on cell therapy for different diseases and injured organs, including diabetes, liver and heart disease. Contents: Defining Progenitors Based on Their Expression of Aldehyde Dehydrogenase (R W Storms)Fetal Mesenchymal Stem Cells are More Primitive than Adult Mesenchymal Stem Cells (C Götherström et al.) The Immunoregulatory Role of Mesenchymal Stem Cells (F Dazzi & J Timoshanko) Understanding Cell Migration Through the Paradigm of T-Lymphocyte Homing (V Mirenda & F M Marelli-Berg) Blueprint for the Response of Blood and Bone Marrow-Derived Stem Cells and Their Progeny to Hypoxia (S M Watt et al.) The Potential of Stem Cells in Tissue Engineering (N D Evans & J M Polak) Joint Tissue Engineering (C De Bari et al.) Adult Stem Cells as a Treatment for Liver Diseases (N Levičar) The Generation of Pancreatic Beta Cells from Stem Cells: Intra- and Extra-Pancreatic Sources (M Brittan et al.) Cytokines and Stem Cell Differentiation into Cardiomyocyte Lineage Cells (I Dimarakis) Regulatory Networks Controlling Neural Stem Cell Self-Renewal and Differentiation (Y Shi) Demyelination as a Therapeutic Target in Spinal Cord Injury (J R Faulkner & H S Keirstead) Microchimeric Foetal Stem Cells and Non-Invasive Prenatal Genetic Diagnosis (M A A Mikhail) The Role of Stem Cells in Liver and Gastrointestinal Cancer (M R Alison et al.) Embryonic Stem Cells: Innovation in Predictive Toxicology (G G Cezar & J Quam) Readership: Life science scientists, biomedical researchers,
surgeons, clinicians, biotechnology and pharmaceutical industry professionals, postgraduate and undergraduate students. Keywords: Stem Cell; Fetal Stem Cells; Cardiac; Liver; Pancreas; Homing

Key Features: Comprehensive and up-to-date overview for clinicians and scientists

Contributed by leading authorities on stem cells

Information presented in a form accessible to all interested students, clinicians and scientists

Easily accessible and richly illustrated

Essentials of Stem Cell Biology

Stem cell and regenerative medicine research is a hot area of research which promises to change the face of medicine as it will be practiced in the years to come. Challenges in the 21st century to combat diseases such as cancer, Alzheimer and related diseases may well be addressed employing stem cell therapies and tissue regeneration. Frontiers in Stem Cell and Regenerative Medicine Research is essential reading for researchers seeking updates in stem cell therapeutics and regenerative medicine. The sixth volume of this series features reviews on roles of mesenchymal stem cells in cartilage regeneration and bone regeneration, liver regeneration, cardiogenesis, cardiomyocyte differentiation, and regenerative therapy for neurodegenerative disorders.

Stem Cells

Biomaterial Control of Therapeutic Stem Cells

This book is an updated reference for one of the most exciting field of biomedical researches- Stem Cell Research and its therapeutic applications. Stem cell research holds great promise for the treatment of many human diseases that currently lack effective therapies. The set of chapters in this book provide insights into both basic stem cell biology and clinical applications of stem cell-based cell replacement therapies for a variety of human diseases, including cardiovascular diseases, neurological disorders, and liver degeneration. It also covers novel technologies for the culture and differentiation of both human embryonic stem cells and adult tissue stem cells. This book summarizes our current state of knowledge in stem cell research and integrates basic stem cell biology with regenerative medicine in an overall context. It is an essential reference for students, postdoctoral fellows, academic and industrial scientists, and clinicians.

Acknowledgements

The editors would like to thank Ms. Jill Brantley, Rose Chavarin, Alina Haas, and Emily Sun for their administrative assistance and proof-reading of this book. We would also like to thank all the authors for their contributions. The editors wish to dedicate this book to our mentors Ron Evans, Fred Gage, and, in memory of Daniel E. Koshland, Jr.
Stem Cells and the Future of Regenerative Medicine

As in volume 1 of this series, this volume presents information on stem cells and cancer stem cells; Therapeutic Applications in disease and tissue/organ injury. Methodologies of regenerative medicine and tissue engineering are major components of this volume. Specific stem cells discussed are: human embryonic stem cells, hematopoietic stem cells, cord blood stem cells, human pluripotent stem cells, gliosarcoma stem cells, induced pluripotent stem cells, intestinal stem cells, human thyroid cancer stem cells, tumor stem cells, menstrual stem-like cells, neural stem cells, breast cancer stem cells, allogeneic mesenchymal stem cells, fetal membrane-derived mesenchymal stem cells, and omental stem cells. The method for isolating bone marrow stromal cells is explained. Method for generating marmoset-induced pluripotent stem cells, using transcription factors, is also explained. Use of stem cell lines in therapeutic applications is discussed. Programming of stem cells is described. Methods for transplantation of stem cells are presented. Use of various types of stem cells for conditions such as stroke, ischemia, heart diseases, Alzheimer’s disease, and neurodegenerative diseases in general, is explained. For example, generation of human cardiac muscle cells from adipose-derived stem cells is included. Another example is repairing bone defects using mesenchymal stem cells and mesenchymal-derived endothelial cells. Differentiation of new neurons from neural stem cells is described. Method for repairing retina condition using human embryonic stem cells is explained; these cells can induce neural differentiation. Treatment of graft-versus-host disease resulting from hematopoietic stem cell transplantation is elaborated.